Specification of Thermoelectric Module

TEC1-12710

Description

The 127 couples, 40 mm × 40 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 70 °C or larger delta T max, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

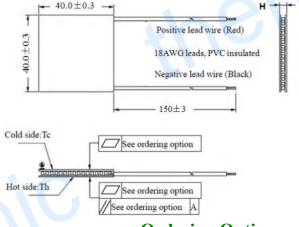
- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	16	17.2	Voltage applied to the module at DT _{max}	
I _{max} (Amps)	10.1	10.1	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	101.1	110.5	Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	1.25	1.38	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	


A. Solder:

1. Alumina (Al₂O₃, white 96%)

Geometric Characteristics Dimensions in millimeters

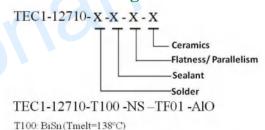
Manufacturing Options

B. Sealant:

1. T100: BiSn (Tmelt=138°C) 1. NS: No sealing (Standard) 2. T200: CuAgSn (Tmelt = 217°C) 2. SS: Silicone sealant 3. T240: SbSn (Tmelt = 240°C) 3. EPS: Epoxy sealant

C. Ceramics: D. Ceramics Surface Options:

2. Aluminum Nitride (AlN) 2. Metalized

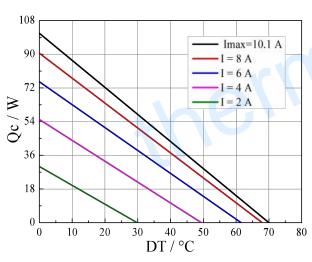

Ordering Option

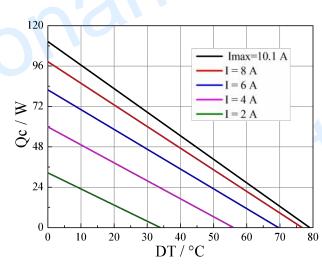
Suffix	Thickness	Flatness/	Lead wire length (mm)
	H / (mm)	Parallelism (mm)	Standard/Optional length
TF	0:3.6±0.1	0: 0.08/0.08	150±3/Specify
TF	1:3.6±0.03	1: 0.03/0.03	150±3/Specify

Eg. TF01: Thickness 3.6±0.1(mm) and Flatness 0.03/0.025 (mm)

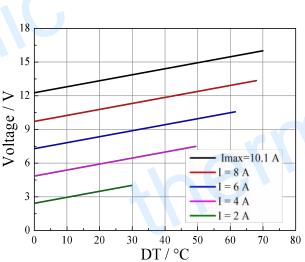
Naming for the Module

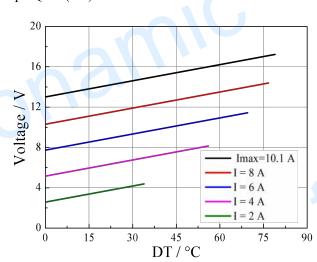
1. Blank ceramics (not metalized)

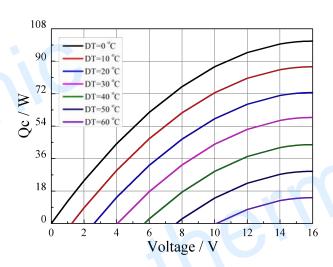

NS: No sealing AlO: Alumina (Al2O3, white 96%)
TF01: Thickness ± 0.1 (mm) and Flatness/ Parallelism: 0.025/0.025 (mm)

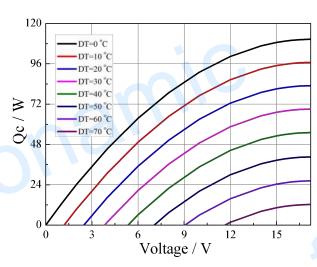

Specification of Thermoelectric Module

TEC1-12710


Performance Curves at Th=27 °C

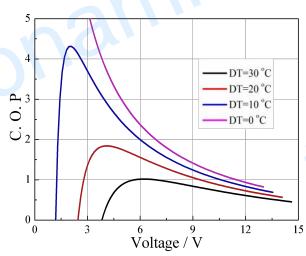

Performance Curves at Th=50 °C



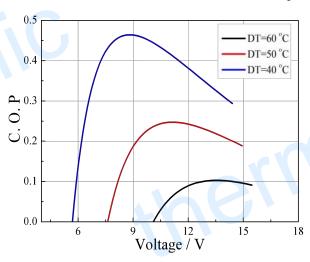

Standard Performance Graph Qc= f(DT)

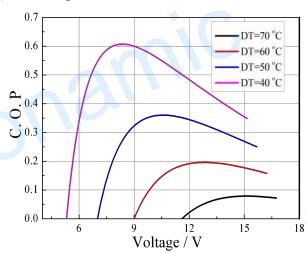
Standard Performance Graph V = f(DT)

Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEC1-12710


Performance Curves at Th=27 °C


5 4 DT=30 °C DT=20 °C DT=10 °C DT=0 °C Voltage / V

Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Cautions

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.